
 

Design and Implementation of LOD Explorer: A LOD 

Exploration and Visualization Model 

 

 
 

 

Abstract 

The quantity of data published on the Web according to principles of Linked Data (LD) is increasing intensely. However, this data is still 

largely limited to be used up by domain professionals and users who understand LD technologies. Therefore, it is essential to develop tools 

to enhance intuitive perceptions of LD for lay users. The features of LD point to various challenges for an easy-to-use data presentation. 

In this research, the technical details behind the LOD Explorer, which is a tool for exploring the Web of Data, is presented, the efficiency 

and scalability of the system has been tested using several different platforms, and the results of experiments indicated an outstanding 

performance. 

 

Keywords: Semantic web; linked open data; linked data browsers; RDF; SPARQL; graph; visualization; interaction 

 

 

I. INTRODUCTION 

So far, the size of the LD has grown tremendously [1]. 
Consequently, a lot of LD projects are available for use and 
millions of triples have been put away in triple datasets [2]. 
However, from the opposite point of view, it is challenging to 
find exploring tools truly based on RDF standards that are 
capable to validate the efficiency of these standards [3]. Hence, 
an improved approach for presenting Web of data is developed 
so as to facilitate the human inspection of information accessible 
as LD. The developed system, which is called LOD Explorer , 
has been implemented with the aim of: 

• RDF datasets exploration employing a dynamic visual graph 

• using different RDF datasets to be used and connected with 
each other 

• expanding the norm and standardization space of LD 

• providing an easy application to be used by everybody for 
LD Exploration 

• presenting data properties of LD resources 

• searching within the resources to find its connections 

• fetch and display an image of the resource 

• providing flexibility for adding plugins 

The fundamental idea of the LOD Explorer is to deliver an 
easy approach to discover, understand, and learn the published 
resources along with the W3C standards for Semantic Web 

The novelty of the proposed approach is the capability to 
straightaway explore a SPARQL endpoint utilizing the 
greatness of JavaScript and its libraries without the need of a 
server side module which has been used by other systems 
presented in [2], [4]. LOD Explorer uses the technologies of 
JSONP calls to the constructed endpoints fetching JSON 
formatted data to be parsed by JavaScript and presents the LOD 
resources in an HTML5 web page. While the resource is fetched 
from the Dataset, all the provided functions such as searching 
within the resource and exploring all the details of the resource 
are possible even if the device is disconnected from the Internet. 
This is because the system has been developed using only client 
side technologies without the need of any server side modules. 

 

 

 

Veredas Journal || ISSN:0874-5102 www.veredasjournal.org

Volume 16 Issue 1 2026 Page No: 19



 

 

 

 

 

The resources are presented as graph nodes while their 
properties as textual information with the aim of mixing the best 
of both worlds. Hence, this way, the significance of using 
SPARQL endpoints can be proved and promoted using 
triplestores to develop federated queries [5]. 

LOD Explorer processes RDF data in advance and organizes 
them for presentation. The system presents all existing materials 
in RDF datasets without hiding any of its portions. For instance, 
property types are used to group In/Out properties. 

The exploration process can be initiated by querying the 
endpoint for a particular resource either by using a resource 
name or a resource URI. A couple of resource examples where 
one can start from are provided as well. Afterward, exploring the 
resource is easy as can be through an attractive information 
presentation and following the related incoming and outgoing 
connections. New resources can be added to the graph and each 
of the newly opened resources will automatically connect to the 
ones already opened, if and only if there is a semantic connection 
between them. 

The system has been constructed using the following 
technologies: 

• Pure JavaScript 
• jQuery libraries 
• jsPlumb toolkit to draw nodes of graph 
• an HTML5 page 

The working schema of the system is illustrated in Fig. 1. 
 

Fig. 1. Working Schema 

II. SYSTEM MODULES 

The system consists of several modules. The most important 
modules will be explained in this section. 

A. Configuration module 

The system starts by using this module to configure and 
initialize all the required variables needed to fire up the system. 
The system is developed in a modular fashion as highlighted by 
[6], [7], therefore, the variables in this module can easily be 
changed to fulfil any further developments. The configuration 
module includes the setup of the triplestores to access and 
retrieve the data from. Currently, the system uses only DBpedia 
dataset to search and retrieve the RDF data, using the DBpedia 
Lookup Service API . However, the module is designed in a 
way that can allow further datasets APIs to be included and fetch 
the data from. 

After initializing all the required variables, the module 
begins to initialize the services to be added to the application. 
One of the services is to initialize the SPARQL query service so 
as to handle the resources when they are queried from the 
SPARQL endpoint. 

B. Graph module 

This module is responsible mainly for the graph layout of the 
system. The module starts by initializing all the required 
variables for the layout such as nodes, node types and zoom ratio 
of the view, and then initializes the visualization engine by 
importing defaults into the jsPlumb instance. It creates a main 
graph unit for the whole system so to draw and display all the 
nodes of the graph. 

Adding resources as nodes to the graph is the next mission 
of the module with the help of Graph Node and Linker Modules. 
This can be done by taking a resource ID, which is the resource 
URI itself, and finds the label of the resource, and adding to the 
graph as a new node. The process of adding a new resource is 
shown in Fig. 2. Since this module mainly takes care of the 
layout of the graph, adding new resources is performed by taking 
care of the available nodes on the graph as well. For instance, 
when opening a resource Details Box (or Details Panel) as 
shown in Fig. 5, and a resource is added from that Details Box 
of the opened resource, the newly added resource will be added 
around the corresponding resource. This is implemented by 
taking and keeping the position of each of the opened node. This 
way a better Human Computer Interaction (HCI) usability is 
achieved for the user to draw the nodes around the opened node. 

A drawn node can be removed from the graph; this is 
performed in several stages. First, the system pushes this node, 
using its URI, into a stack called Node List. This list is used by 
the Undo function to redraw the removed node by the user. 
Second, the node is removed from the search container so that it 
is not included in any of the future search within resources 
method. Third, the node Detail Box is removed from the 
background when it is open. Fourth, all the endpoints/edges 
connected from/to this node are removed by jsPlumb instance. 
Finally, the graph node is detached from the graph using the 
jQuery detach method. 

Deleting all nodes function is also possible from the system, 
which passes through the same steps of deleting a single node 

Veredas Journal || ISSN:0874-5102 www.veredasjournal.org

Volume 16 Issue 1 2026 Page No: 20



 

 

 

 

 

except it clears all of the nodes, and all of them are redrawn at 
once when the Undo action is executed. 

The Undo function, as it is clear from its name, is used to go 
back to the previous state. The function is triggered when a node 
is inserted into or removed from the graph. It works like a stack 
by going back step by step from the last performed actions to the 
first performed action. The method also goes through several 
steps, similar to deleting a node method, performing this action. 
When a node is inserted into the graph, it pushes to a list called 
Undo Action List. This list is used by this method to go to the 
previous state of adding that node. Similarly, when a node is 
removed, it is removed from this list as well with the same 
reason of node insertion. Undoing an inserted node, which 
means deleting this node, will do all the steps of deleting a node. 
However, Undoing a deleted node, will do a reversed step for 
deleting a node. Undoing a deleted node means inserting that 
node into the graph again, which means all the relations and 
properties of this node have to be available all over again for the 
system. This is more likely to be the case than as redrawing the 
node from the beginning, except remembering the position of 
the removed node to be redrawn at the same position of its 
deletion. 

 

Fig. 2. Adding node to the graph 

 

Highlighting the nodes while being clicked is attained from 
this module as well. When the Details Box for any of the 
resources is opened, that resource is highlighted with a different 
color with the purpose of HCI features as emphasized by [8]. 
Besides, this feature is used by the Explore method so as to get 
a configured number of new resources semantically related to 
the highlighted resource and add them to the graph. 

C. Buttons module 

This module is designed to aware of all the buttons, toolbar 
and navigation menu of the system. It starts by initializing a 
couple of variables needed for the system and then initializes the 
search form of the system. 

The search for resources is the most important section of this 
module which starts by selecting the search provider of the 
system. Currently, only the DBpedia Lookup service is set for 
the system as the search provider, but as mentioned above, the 
system is designed to accept further search providers by 
modifying the configuration module. An auto complete service 
is provided for sending requests to the SPARQL endpoint and 
receiving the responses for the searched term using AJAX 
technologies. This will help users to get results as soon as they 
start writing their queries. Resource labels are shown for the 
search results and they are pushed into a result container. When 
selecting a resource, the URI of the resource is returned from the 
endpoint and is sent to Graph Node module to add the resource 
and complete the process. Furthermore, a local database for the 
selected resource is prepared so as to assemble the related data 
of the selected resource for the search within the resource 
process. 

Searching inside the resources is the next important unit of 
the module. When a resource is selected from the search section, 
this unit is activated so as to find the resources that are related to 
the selected resource. The method provides an autocomplete 
facility while searching for related data of the available 
resources and lists the results in a dynamic list. The related data 
in the dynamic list is displayed as subject, predicate and object 
considering the principles of LD, where the subject is the 
resource containing the searched data, the predicate is the 
property of that resource, and the object is where the searched 
data is found (the target). When the targeted resource is selected 
from the list, the details box for the resource containing the 
related data gets opened and the target resource is perceptible. 
The related data of resources are stored in a local storage, and 
whenever a resource is added or removed from the graph, this 
storage is refreshed so as to provide related data for all available 
resources on the graph. 

One of the interesting methods in this module is the Explore 
utility. It is developed in order to assist users in exploring more 
semantic relationships to a specific resource. This method works 
as soon as there are resources activated on the graph. It takes a 
number of LD of the selected resource randomly to be drawn on 
the graph. The number of selected LD can be modified from the 
configuration module. Fig. 3, illustrates the dataflow of the 
explore utility. 

Simple information of any resource can be displayed quickly 
in the Resource Information Box, which displays resource label, 
DBpedia URL of the resource, Wikipedia URL of the resource, 
and the abstract of the resource. The other facility that is 
provided by this module is the Zoom utility, where the drawn 
graph nodes can be zoomed in and out. 

The search menu is designed with the HCI philosophies in 
mind, where the accordion effects are applied to the forms in 
order to give users a wider area for exploration to users. 

D. Application module 

Once the variables needed to drive the system are prepared, 
the application module takes the responsibility to initialize the 
methods of jsPlumb, graph module, button module, profile 
module, and other processes needed for the system. The jsPlumb 
methods include getInstance, which instantiates independent 

Veredas Journal || ISSN:0874-5102 www.veredasjournal.org

Volume 16 Issue 1 2026 Page No: 21



 

 

 

 

 

instances of jsPlumb by taking an object which provides the 
defaults from the configuration module, 
registerConnectionTypes to set a collection of attributes such as 
paint style and hover paint style. This is a subset of the 
parameters one can set in an Endpoint or Connection definition, 
and registerEndpointTypes which registers all of the given 
Endpoint types on this instance of jsPlumb. Afterwards, the 
module initializes the FancyBox tool, which is used to display 
images of resources in a "lightbox" that floats overtop of web 
page. 

 

Fig. 3. Explore method 

 

E. Graph node module 

The module contains the most important parts of the system, 
where the nodes of the graph are spawned. The module begins 
by initializing a set of variables needed for the graph node such 
as its LD, presenting basic info of the node, images, and etc., the 
newly added node is checked with any of the available nodes of 
the graph to check whether there are relations between them or 
not. If there are linked relations among any of the available 
nodes, then the newly added node has to be linked with them. 
This process is done with the help of the relationships class of 
the system which takes the URI of the target, connection label, 
direction of the connection, and the endpoint label. 

Collecting the contents of the resource is the next mission of 
the module. The LD of the resource is collected so as to be 
presented in the details box. The method is divided into three 
main parts: Literals, In connections, and Out connections. For 
each linked relation of the resource, the URI, the type of 
direction and the literal the linked resource converted to string 
are obtained and pushed into an array of elements so as to be 
used for the details box. 

Each drawn node has an image representing the resource. 
This image is obtained using either the depiction property of 
FOAF or the thumbnail property of DBpedia. Afterwards, the 
image is sent to be stored in an images array in order to be used 
by Fancybox tool to show the resource image. 

Since there is no server side scripts in the proposed approach, 
and we have no control over the server files we are querying to, 
hence using the technology of JSONP is a must. To collect the 
data of a resource, the module, with the help of Server-Linker 
class, starts the process of making queries and get the LD. It 
starts by initializing the API service for the dataset server to be 
queried from, which is the DBpedia dataset in our case. 
However, the method is flexible to accept other dataset APIs 
since it extracts the prefix of the dataset from the resource URI. 
Later, the SPARQL query is initialized to set the format and 
parameters of the query such as the service endpoint and query 
output as JSON. Then the JSONP method is used to set the URL 
of the service including resource URI, set the callback parameter 
and request data using the script tag to overcome the problems 
caused due to cross-domain policy. When the method 
successfully requests data, the return of the request is the JSON 
formatted data. 

So far, the LD to the queried resource is available at the 
client side as JSON formatted object, hence, binding the results 
of the object is the next step to be performed. The method starts 
by taking the JSON object which starts to analyze it. If the JSON 
object is returned with no problems and the service of the 
endpoint is not empty, the time taken to process the resource is 
set to start. There are two main directions for the LD of the 
resource, which are In and Out directions. Thus, a list for each 
of them is created so as collect the related data for both 
directions. For each item in the object result a check for a self- 
connection is taken so as to prevent possible loops. The method 
then checks whether the item is Out or In. When the connection 
is Out, the image of the resource is stored and the item type is 
tested for whether it is a URI, Literal, or an unknown type. When 
the type is a literal, the item is added to the literals list of the 
resource by taking the language version of the literal. 

Once the type is a URI, then it is decoded and examined with 
the URI of the current resource to flag any self-targeted 
connections, which creates a loop. Afterwards, the node type, 
endpoint label, and node URI are stored for the node. For 
instance, from the Out connections in the detail box of Iraq 
resource, Language as type, Kurdish language and its URI as 
endpoint label and URI can be found. 

When the type is not a URI nor a literal, then the type is 
unknown yet. A similar process for the In direction is achieved 
for the item. 

Up to now, the ontologies and properties of the resource is 
collected for both In and Out connections, thus, parsing them is 
the next turn so as to add connections for each property type, 
property URI and endpoint label of each resource. 

Finally, the post parsing begins to set labels for both English 
and no language labels. After that, the search database gets 
refreshed to include the newly LD of the current resource so that 
they are available for the search within the resources method to 
find related data for the whole graph. Consequently, the whole 
drawn graph gets refreshed and the newly added resource gets 
inserted into a list of nodes. Finally, the undo action is logged to 
insert the node list into the undo action list. 

Veredas Journal || ISSN:0874-5102 www.veredasjournal.org

Volume 16 Issue 1 2026 Page No: 22



 

 

 

 

 

F. Linker module 

As it is clear from its name, the module’s main duty is to 
form an environment for system files to link and connect with 
other tools used for the system, such as jsPlump toolkit and 
fancybox tool. Since the module communicates with the 
visualization tools, methods needed for visualizing nodes are 
employed in this module as well. Linker module consists of a 
wide range of methods, however, the most important methods 
will be explained in this section. When the data of a resource has 
been processed by Graph Node module, it is then required to be 
drawn on the ground. To do so, required information need to be 
sent to this module so that it is processed and sent to other tools 
to draw the resource as a graph node. 

When the graph module initializes the graph, it uses this 
module to initialize the visualization engine by connecting to 
jsPlumb tool and run the jsPlumb Instance to import all the given 
defaults into this instance of jsPlumb. 

As soon as the system is ready and the graph is initialized, 
resources can be added to the graph. If a resource has newly been 
added to the graph, a random position from an available empty 
ground area is taken to draw the node on. When a node has 
recently been deleted from the graph and needs to be added 
again, for instance from the Undo action, then the node is re- 
drawn at the same place where it was deleted since the top and 
left positions of the node are stored in the window variable for 
this purpose. If a node is added from the details box, the position 
of the newly added node will be close to the opened node with 
the aim of drawing nodes next to nodes having relationships 
with each other. These facilities are achieved by specific 
methods developed specifically for these purposes. 

A method to show the node then runs to send the required 
data for the jsPlumbInstance object to draw the node. The 
draggable method of the object is used for the node so that each 
drawn node can easily be moved on the ground. To turn the 
entire elements into connection sources and targets, makeSource 
and makeTarget methods of the jsPlumb tool have been used. 
With these methods elements are marked as a source or target, 
and they provide an endpoint specification for the tool to use 
when a connection is established. 

Images of the nodes are also set in this method be checking 
the resource data whether it has an image or not. In case the 
resource already have the image, which takes from the resource 
depiction or thumbnail properties, then the details of this image 
will be sent to Fancybox tool in order to set the image and make 
it visible within the node. In case the resource property does not 
provide any image details, then default images (sprites) for the 
node are employed to show icons for the node representing its 
type, for example for person nodes a person icon will be visible. 

When more than a node is added to the graph, the probability 
of having relations with the available nodes has to be performed 
to connect the linked nodes. This module is responsible for this 
task as well, by taking the URI of the newly added resource and 
comparing it with each of the URIs of the available nodes on the 
graph. The getConnections method of the jsPlumb Instance is 
used to get all of the connections currently managed by the 
jsPlumb instance by taking the URI of the newly added resource, 
URI of the target resource, which is from the available nodes on 

the graph, and the connection label, which is the type of the 
connection between both nodes. Afterwards, jsPlumb Connect 
method establishes the link connection between the two nodes if 
and only if a connection with the same label and direction is not 
found. 

During this process, the time taken from the first step of the 
creation of the node till the final step of the visualization is 
calculated and presented. Also, the time taken to arrange the 
details box such as ordering them into tabs of description, In 
connections, and Out connections is calculated and presented to 
the console window. 

III. IMPLEMENTATION AND RESULTS 

In this section, a brief introduction of the interface and the 
interaction model of the web application on the proposed 
framework: LOD Explorer, is the presented. Later on, real tests 
and performance measurements of the system is proposed, 
furthermore, the scalability of the system is verified. The 
exploratory search systems are sometimes referred to as Human- 
Computer Information Retrieval systems (HCIR) by the 
scientific community [9]. Hence, the position of the interactions 
for successful explorations is emphasized from this 
denomination. The interfaces have to be optimized to favor the 
users’ engagement and to support them continuously and 
intensively from a cognitive point of view. 

The user interface of the application consists of the following 
parts as shown in Fig. 5: 

1) Search panel (center) 

2) Toolbox (top right) 

3) Statistics Box (top right) 

4) Description box (right) 

5) Details Panel (left), and 

6) the ground 

 
Statistics box, as shown in Fig. 4. The statistics that are 

presented in this box are as follows: 

1. The total number of triples (piece of information) that 
have been processed by the system so far; 

2. Information about the last inserted resource into the 
graph, which are detailed below: 

• The number of triples the resource owns 

• The time needed to visualize the node 

• The required time needed to processes the resource 

• The time spent to download the resource triples 

• The total time taken to insert the node into the 
graph including the downloading, processing, and 
visualizations. 

A complete description of the application interface is 
described in [3]. 

Veredas Journal || ISSN:0874-5102 www.veredasjournal.org

Volume 16 Issue 1 2026 Page No: 23



 

 

 

 

 

 
 

Fig. 4. Statistics Box 

 

A. Real tests and Validation 

Testing is the process of assessing a system or its module(s) 
with the aim of finding whether it fulfils the identified 
requirements or not. In other words, testing is executing a system 
so as to find any gaps, errors, or missing requirements in contrast 
with the actual requirements [10]. In this section, real tests for 
the proposed system are performed by taking several 
experiments. Since the system is fully implemented depending 
on the client side technologies, the system performance depends 
on the machine a user is using for the explorations. Hence, the 
test cases have been performed on different computing 
platforms. The platforms taken for the tests are shown in Table 
I: 

 

 

 

 

 

 

 

 

 

 

Fig. 5. User interface 

1) Test case 1 
In this case, the focus will be on athletics and sport clubs. 

Real Madrid C.F, Cristiano Ronaldo, Lionel Messi, La Liga 
2010-2011, and La Liga 2011-2012 Football Leage Seasons are 
taken as resources. The graph for the above resources can be 
seen from Fig. 6. The number of properties and In and Out 
connections for each resource is shown in Table II: 

 

 

 

TABLE I. RESOURCES WITH THEIR NO. OF PROPERTIES AND CONNECTIONS 
 

P
la

tf
o
rm

 C
o
d

e 

  

M
o
d

el
 

  

P
ro

ce
ss

o
r 

R
A

M
 

H
a

rd
 d

is
k

 

 

O
S

 

 

B
ro

w
se

r 

 

 

P1 

 

Dell Precision 

Mobile 

Workstation 

M6700 

Intel Core i7- 

3720QM CPU @ 

2.60GHz, 4 
Cores, 8 Logical 

Processors 

 

 

24 GB 

DDR3 

 

 

256 

SSD 

 

Windows 

10 Pro, 64- 

bit 

 

Google 

Chrome 

V63, 64- 

bit 

 

P2 

 

MacBook Pro 

 

2.2 GHz, Intel 

Core i7, 4 cores 

 

16 GB 

DDR3 

 

256 

SSD 

MacOS 

High Sierra 

V. 10.13.2 

Google 

Chrome 

V63, 64- 

bit 

 

 

P3 

 

Dell Precision 

Mobile 

Workstation 

M6700 

Intel Core i7- 

3720QM CPU @ 

2.60GHz, 4 

Cores, 8 Logical 

Processors 

 

 

24 GB 

DDR3 

 

 

256 

HDD 

 

Linux, 

Ubuntu 

14.04 LTS, 

64-bit 

 

Google 

Chrome 

V64, 64- 

bit 

 

P4 
Lenovo Mixx 2 

11 Tablet 

Intel Core i5- 

4202 CPU @ 1.6 

GHz, 2 Cores 

8 GB 

DDR3 

256 

SSD 

Windows 

8.1 64-bit 

Google 

Chrome 

V63, 64- 
bit 

 

Fig. 6. Test case 1 resources 

 

TABLE II. RESOURCES WITH THEIR NO. OF PROPERTIES AND CONNECTIONS 
 

Resource Name 
No. of 

Properties 
No. of Connections (In/Out) 

Real Madrid C.F 88 5693 

Cristiano Ronaldo 61 1628 

Lionel Messi 67 1475 

La Liga 2010-2011 197 701 

 

 

From the above graph, some interesting facts are observed. 
All of the resources have connections with each other with 
different connection types. For instance, Cristiano Ronaldo has 
a couple of connections with Real Madric C.F as one of the 
connections clarifies that the resource is the team he is playing 
for; he has two connections with Lionel Messi and La Liga 
season 2011-2012 from wikiPageWikiLink property; he has 
connections to La Liga 2010-2011 as seasons league top scorer. 
Real Madrid C.F is the winner of Spanish league season 2011- 
2012 but Lionel Messi is the league top scorer for the same 
league. 

The time needed for the resources in the graph to be drawn 
on the ground are exposed in Table III and Table IV. 

2) Test case 2 
In this experiment, a graph with a larger number of nodes 

was the target. Fifty resources with a high number of 

Veredas Journal || ISSN:0874-5102 www.veredasjournal.org

Volume 16 Issue 1 2026 Page No: 24



 

 

 

 

connections from different types have been added to the graph. 
The aim was to validate the scalability of system. The graph of 
this experiment is shown in Fig. 7. 

B. Result discussions 

The results of the above experiments are discussed in this 
section. Starting from test case 1, the nodes of the graph are 
tested and measured on different platforms, as shown in Table 
III and Table IV, using both localhost copy and the uploaded one 
to the online host. 

Results of test case 1, where the graph nodes have more 
connections with each other, are presented in Table III and Table 
IV. 

The results clarify that the visualization process does not 
depend on the amount of information and the number of 
connections a node has with other nodes of the graph, but 
instead, the processing time effects with this situation. 
Accordingly, the hardware and software specifications of the 
machine building the graph has a direct influence on the time of 
the graph creation. P4 has worst performance in all experiments 
for both online and local host cases due to the worse 
specifications the machine has among other machines. 

 

Fig. 7. A graph with 50 nodes 

 

TABLE III. TEST CASE 1 RESULTS FROM LOCALHOST 

 

 

 

 

TABLE IV. TEST CASE 1 RESULTS FROM ONLINE HOST 
 

T
es

t 
N

o
. 

R
es

o
u

rc
e 

n
a
m

e 

N
o

. 
o

f 
P

ro
p

er
ti

es
 

In
 &

 O
u

t 

co
n

n
ec

ti
o
n

s 

 

O
v

er
a
ll

 T
im

e 

/m
il

li
se

co
n

d
s 

 

D
o
w

n
lo

a
d

in
g
 

T
im

e 
/m

il
li

se
co

n
d

s 

 

P
ro

ce
ss

in
g

 T
im

e 

/m
il

li
se

co
n

d
s 

V
is

u
a

li
zi

n
g

 T
im

e 

/m
il

li
se

co
n

d
s 

P
la

tf
o
rm

 C
a
se

 

1 

R
ea

l 

M
ad

ri
d

 C
.F

 

8
8
 

 

 

5693 

1767.134 1647.437 108.023 11.674 P1 

2 4624.369 4542.649 70.790 10.930 P2 

3 2081.305 1757.858 294.090 29.357 P3 

4 2644.071 2202.772 384.248 57.051 P4 

5 

C
ri

st
ia

n
o
 

R
o
n
al

d
o
 

6
1
 

 

 

1628 

831.020 786.494 37.234 7.292 P1 

6 1428.337 1394.938 26.676 6.723 P2 

7 1022.099 915.066 87.757 19.276 P3 

8 1347.060 1190.267 131.338 25.456 P4 

9 

L
io

n
el

 

M
es

si
 

6
7
 

 

 

1475 

804.165 768.413 29.556 6.196 P1 

10 1200.215 1170.772 23.312 6.131 P2 

11 917.607 836.276 65.677 15.654 P3 

12 1383.593 1258.390 101.792 23.411 P4 

13 

L
a 

L
ig

a 

2
0
1
0
-2

0
1
1
  

 

197 

 

 

701 

532.906 508.222 16.246 8.438 P1 

14 1205.779 1186.719 11.093 7.967 P2 

15 1480.762 1435.747 27.430 17.585 P3 

16 1060.046 976.106 49.884 34.055 P4 

17 

L
a 

L
ig

a 

2
0
1
1
-2

0
1
2
  

 

191 

 

 

707 

1116.425 1092.491 15.909 8.025 P1 

18 1127.999 1110.316 9.161 8.522 P2 

19 1029.644 982.155 25.857 21.632 P3 

20 1435.325 1358.168 50.741 26.416 P4 

 

 

For test case 2, where the aim was to test the system for the 
scalability, fifty nodes were inserted into the graph, as displayed 
in Fig. 7. These nodes were chosen to have as many connections 
as possible. As a result, 427,391 pieces of information were 
downloaded to the graph and were processed by the system to 
visualize the nodes and form the graph. The experiment in this 
case was tested using only P1. 

The outcomes in Table V show that, for all the 50 nodes, the 
overall time spent to form the graph is around 126 seconds (2.52 
seconds per node as average). However, most of the time was 
spent for downloading data from the dataset, which was about 

9 

L
io

n
el

 M
es

si
  

 

67 

 

 

1475 

1351.047 1313.228 29.354 8.465 P1 

10 662.896 639.698 16.976 6.222 P2 

11 873.006 802.203 54.347 16.456 P3 

12 2296.171 2128.082 133.825 34.264 P4 

13 

L
a 

L
ig

a
 

2
0
1
0
-2

0
1
1
 

 

 

197 

 

 

701 

626.532 603.054 15.439 8.039 P1 

14 1774.441 1758.331 7.523 8.587 P2 

15 855.996 800.100 34.365 21.531 P3 

16 1687.813 1580.636 64.949 42.228 P4 

17 

L
a 

L
ig

a 

2
0
1
1
-2

0
1
2
 

 

 

191 

 

 

707 

709.336 686.588 15.638 7.110 P1 

18 513.181 499.541 6.487 7.153 P2 

19 1092.932 1037.034 32.727 23.171 P3 

20 3264.312 3161.872 59.353 43.087 P4 

 

T
es

t 
N

o
. 

R
es

o
u

rc
e 

n
a
m

e 

N
o

. 
o

f 
P

ro
p

er
ti

es
 

In
 &

 O
u

t 

co
n

n
ec

ti
o
n

s 

 

O
v

er
a

ll
 T

im
e 

/m
il

li
se

co
n

d
s 

 

D
o
w

n
lo

a
d

in
g
 T

im
e 

/m
il

li
se

co
n

d
s 

P
ro

ce
ss

in
g

 T
im

e 

/m
il

li
se

co
n

d
s 

V
is

u
a

li
zi

n
g

 T
im

e 

/m
il

li
se

co
n

d
s 

P
la

tf
o

rm
 C

a
se

 

1 

R
ea

l 
M

ad
ri

d
 

C
.F

 

 

 

88 

 

 

5693 

3753.979 3626.060 116.376 11.543 P1 

2 1580.713 1501.610 69.829 9.274 P2 

3 2882.149 2567.175 282.941 32.033 P3 

4 3429.790 2914.799 445.551 69.440 P4 

5 

C
ri

st
ia

n
o
 

R
o
n
al

d
o
 

 

 

61 

 

 

1628 

1437.209 1399.479 30.403 7.327 P1 

6 696.206 671.925 18.553 5.728 P2 

7 959.916 859.273 80.763 19.880 P3 

8 2013.218 1811.451 171.731 30.036 P4 

 

Veredas Journal || ISSN:0874-5102 www.veredasjournal.org

Volume 16 Issue 1 2026 Page No: 25



 

 

 

 

 

115 seconds (2.3 seconds per node as average). The total time 
needed to process the graph which consisted of 427,391 piece of 
data was only 8.316 seconds (0.16632 seconds per node), and 
the time required to visualize all the graph nodes was only 3.177 
seconds (0.06354 seconds per node) which are amazing results. 

C. Validation 

A manual testing is performed for the above experiments in 
order to investigate the effective performance of the system. The 
investigation is conducted so as to meet the goals of Software 
Development Life Cycle (SDLC). The system operated 
smoothly and met the requirements that conducted its design and 
development. The system appropriately responded to all kinds 
of queries, and its functions achieved in an outstanding time and 
free of bugs. 

TABLE V. FIFTY NODE GRAPH STATISTICS 
 

N
o

d
e 

N
o
. 

 

O
v

er
a
ll

 T
im

e 

D
o
w

n
lo

a
d

in
g
 

T
im

e 

P
ro

ce
ss

in
g

 T
im

e 

V
is

u
a

li
zi

n
g

 T
im

e 

N
o

d
e 

N
o
. 

 

O
v

er
a
ll

 T
im

e 

D
o
w

n
lo

a
d

in
g
 

T
im

e 

P
ro

ce
ss

in
g

 T
im

e 

V
is

u
a

li
zi

n
g

 T
im

e 

1 3715.52 3212.69 467.33 35.51 26 2433.98 2330.67 74.82 28.50 

2 3970.68 3539.39 412.38 18.92 27 6300.63 5827.37 437.79 35.48 

3 4729.00 4367.85 340.38 20.77 28 1201.66 1037.25 119.85 44.55 

4 3158.73 2779.75 361.94 17.04 29 2803.04 2561.34 197.06 44.64 

5 6958.82 6548.30 393.07 17.46 30 1110.53 1009.79 4.32 96.42 

6 14077.16 13617.83 443.12 16.21 31 727.58 566.97 19.88 140.73 

7 5508.63 5082.13 405.34 21.17 32 706.48 660.95 7.82 37.71 

8 1893.47 1543.60 325.36 24.52 33 587.19 508.77 37.02 41.40 

9 1608.53 1462.60 129.93 16.00 34 561.24 468.27 40.38 52.58 

10 7610.72 7220.10 371.50 19.11 35 1391.80 917.79 387.93 86.08 

11 2316.30 2037.29 257.31 21.70 36 567.95 390.62 13.45 163.89 

12 2302.13 2078.09 206.78 17.26 37 928.57 798.08 100.01 30.48 

13 734.93 651.36 62.23 21.34 38 814.92 652.23 5.82 156.87 

14 1121.49 953.34 151.87 16.28 39 565.19 395.85 23.23 146.11 

15 5190.13 4817.52 354.05 18.56 40 1361.69 1279.46 41.03 41.20 

16 3110.86 2657.91 431.83 21.12 41 789.30 713.84 16.79 58.67 

17 4812.16 4405.92 387.30 18.93 42 980.12 762.43 16.75 200.94 

18 802.42 718.47 62.06 21.89 43 835.27 718.69 39.94 76.65 

19 1709.67 1527.80 164.30 17.57 44 1319.71 1212.03 42.23 65.45 

20 2285.41 2034.74 227.89 22.77 45 1081.70 887.32 22.44 171.94 

21 1365.36 1238.99 103.40 22.98 46 990.27 704.04 54.16 232.08 

22 473.75 430.46 11.85 31.45 47 790.90 720.29 12.61 58.00 

23 293.25 268.17 3.20 21.88 48 680.26 448.63 11.42 220.22 

24 5493.88 5136.42 340.22 17.23 49 3791.37 3549.73 18.85 222.79 

25 5949.93 5785.98 124.04 39.92 50 1547.90 1329.52 31.98 186.41 

TABLE VI. TABLE 5 IN TOTAL 
 

No. of 

Nodes 
Overall Time 

Downloading 

Time 

Processing 

Time 

Visualizing 

Time 

50 126,062.141 114,568.588 8,316.220 3,177.332 

 

 

IV. CONCLUSION AND FUTURE WORK 

The effortless process of uploading data online creates a 
giant volume of data. This causes the information retrieval 
systems to face new challenges in order to return relevant data. 
The evolution of the syntactic Web to the Semantic Web 
technology where the information can be understood by 
machines has raised high expectations. This technology 
increases the efficiency of searching approaches through 
presenting the automated data processing. 

The amount of published data consistent with the standards 
of LD is growing dramatically. However, consumption is still 
limited for professionals who understand the technologies of 
LD. Thus, a tool for intuitive presentation of LD is crucial. LOD 
Explorer, an interactive and easy-to-use tool for exploring RDF 
resources, is presented. The application is made using pure 
JavaScript and jQuery libraries without the need to a server side 
software. Application performance and scalability has been 
measured using several different platforms, and the results have 
been excellent. 

The future plan for the system is to enrich it with several 
further functions such as adding more RDF datasets, giving 
users the opportunity to select a desired shape for the nodes, and 
adding path finding feature so as to find the exact relation 
between two or more resources. Furthermore, adding advanced 
features to include semantic similarity for words and suggest 
semantically similar words to a query as in [11]. 

An interesting future work would be by building a custom 
ontology for a specific task such as e-learning and other 
ontologies as in [12], [13] and apply the LOD Explorer to 
retrieve triples and present the retrievals. 

 

 

REFERENCES 

 

[1] K. Jacksi and S. M. Abass, “Development History of the World Wide 

Web,” Int. J. Sci. Technol. Res., vol. 8, pp. 75–79, 2019. 

[2] K. Jacksi, N. Dimililer, and S. R. M. Zeebaree, “A Survey of Exploratory 

Search Systems Based on LOD Resources,” in PROCEEDINGS OF THE 

5TH INTERNATIONAL CONFERENCE ON COMPUTING & 

INFORMATICS, COLL ARTS & SCI, INFOR TECHNOL BLDG, 

SINTOK, KEDAH 06010, MALAYSIA, 2015, pp. 501–509. 

[3] K. Jacksi, S. R. M. Zeebaree, and N. Dimililer, “LOD Explorer: 

Presenting the Web of Data,” Int. J. Adv. Comput. Sci. Appl. IJACSA, vol. 

9, no. 1, 2018, doi: 10.14569/IJACSA.2018.090107. 

[4] K. Jacksi, N. Dimililer, and S. R. Zeebaree, “State of the Art Exploration 

Systems for Linked Data: A Review,” Int. J. Adv. Comput. Sci. Appl. 

IJACSA, vol. 7, no. 11, pp. 155–164, 2016, doi: 

dx.doi.org/10.14569/IJACSA.2016.071120. 

[5] K. Jacksi, “Design and Implementation of E-Campus Ontology with a 

Hybrid Software Engineering Methodology.” 

[6] K. Jacksi, F. Ibrahim, and S. Ali, “Student Attendance Management 

System,” Sch. J. Eng. Technol. SJET, vol. 6, no. 2, pp. 49–53, 2018. 

Veredas Journal || ISSN:0874-5102 www.veredasjournal.org

Volume 16 Issue 1 2026 Page No: 26



 

 

 

 

 

[7] K. Jacksi, “Design And Implementation Of Online Submission And Peer 

Review System: A Case Study Of E-Journal Of University Of Zakho,” 

Int. J. Sci. Technol. Res., vol. 4, no. 8, pp. 83–85, 2015. 

[8] S. R. M. Z. Adel AL-Zebari Karwan Jacksi and Ali Selamat, “ELMS– 

DPU Ontology Visualization with Protégé VOWL and Web VOWL,” J. 

Adv. Res. Dyn. Control Syst., vol. 11, no. 1, pp. 478–485, 2019. 

[9] N. Marie, “Linked data based exploratory search,” phdthesis, Université 

Nice Sophia Antipolis, 2014. 

[10] M. Fagan, “Design and code inspections to reduce errors in program 

development,” in Software pioneers, Springer, 2002, pp. 575–607. 

[11] R. Ibrahim, S. Zeebaree, and K. Jacksi, “Survey on Semantic Similarity 

Based on Document Clustering,” Adv. Sci. Technol. Eng. Syst. J., vol. 4, 

no. 5, pp. 115–122, 2019, doi: 10.25046/aj040515. 

[12] S. R. Zeebaree, A.-Z. Adel, K. Jacksi, and A. Selamat, “Designing an 

ontology of E-learning system for duhok polytechnic university using 

protégé OWL tool,” J. Adv. Res. Dyn. Control Syst., vol. 11, no. 05- 

Special Issue, pp. 24–37, 2019. 

[13] A.-Z. Adel, S. Zebari, and K. Jacksi, “Football Ontology Construction 

using Oriented Programming,” J. Appl. Sci. Technol. Trends, vol. 1, no. 

1, pp. 24–30, 2020. 

Veredas Journal || ISSN:0874-5102 www.veredasjournal.org

Volume 16 Issue 1 2026 Page No: 27




