Veredas Journal || ISSN:0874-5102 www.veredasjournal.org

Design and Implementation of LOD Explorer: A LOD
Exploration and Visualization Model

Abstract

The quantity of data published on the Web according to principles of Linked Data (LD) is increasing intensely. However, this data is still
largely limited to be used up by domain professionals and users who understand LD technologies. Therefore, it is essential to develop tools
to enhance intuitive perceptions of LD for lay users. The features of LD point to various challenges for an easy-to-use data presentation.
In this research, the technical details behind the LOD Explorer, which is a tool for exploring the Web of Data, is presented, the efficiency
and scalability of the system has been tested using several different platforms, and the results of experiments indicated an outstanding
performance.

Keywords: Semantic web; linked open data; linked data browsers; RDF; SPARQL; graph; visualization; interaction

« searching within the resources to find its connections
I. INTRODUCTION

So far, the size of the LD has grown tremendously [1].
Consequently, a lot of LD projects are available for use and
millions of triples have been put away in triple datasets [2].
However, from the opposite point of view, it is challenging to

« fetch and display an image of the resource
« providing flexibility for adding plugins
The fundamental idea of the LOD Explorer is to deliver an

find exploring tools truly based on RDF standards that are
capable to validate the efficiency of these standards [3]. Hence,
an improved approach for presenting Web of data is developed
s0 as to facilitate the human inspection of information accessible
as LD. The developed system, which is called LOD Explorer ,
has been implemented with the aim of;

easy approach to discover, understand, and learn the published
resources along with the W3C standards for Semantic Web

The novelty of the proposed approach is the capability to
straightaway explore a SPARQL endpoint utilizing the
greatness of JavaScript and its libraries without the need of a

server side module which has been used by other systems
presented in [2], [4]. LOD Explorer uses the technologies of
JSONP calls to the constructed endpoints fetching JSON
formatted data to be parsed by JavaScript and presents the LOD
resources in an HTML5 web page. While the resource is fetched
from the Dataset, all the provided functions such as searching
within the resource and exploring all the details of the resource
are possible even if the device is disconnected from the Internet.
This is because the system has been developed using only client
side technologies without the need of any server side modules.

» RDF datasets exploration employing a dynamic visual graph

« using different RDF datasets to be used and connected with
each other

« expanding the norm and standardization space of LD

« providing an easy application to be used by everybody for
LD Exploration

+ presenting data properties of LD resources

Volume 16 Issue 1 2026 Page No: 19

Veredas Journal || ISSN:0874-5102

The resources are presented as graph nodes while their
properties as textual information with the aim of mixing the best
of both worlds. Hence, this way, the significance of using
SPARQL endpoints can be proved and promoted using
triplestores to develop federated queries [5].

LOD Explorer processes RDF data in advance and organizes
them for presentation. The system presents all existing materials
in RDF datasets without hiding any of its portions. For instance,
property types are used to group In/Out properties.

The exploration process can be initiated by querying the
endpoint for a particular resource either by using a resource
name or a resource URI. A couple of resource examples where
one can start from are provided as well. Afterward, exploring the
resource is easy as can be through an attractive information
presentation and following the related incoming and outgoing
connections. New resources can be added to the graph and each
of the newly opened resources will automatically connect to the
ones already opened, if and only if there is a semantic connection
between them.

The system has been constructed using the following
technologies:

 Pure JavaScript
 jQuery libraries
* jsPlumb toolkit to draw nodes of graph
* an HTMLS page
The working schema of the system is illustrated in Fig. 1.

Setup [Initialize) Initialize

Conﬂgurauons Graph J\ Tools ‘,'
Add New *\ \
[Nodes from [\
4 \
| Linked ‘>—> Explore URI ‘
Connecnons]
/New Nodes \ 5
(from Search | f 2’:{;;?;:’;2 ‘
Panel | y
Search Wltmn \ / get available /
Resourcec
Endpoint
Availability
No
Enrlch Graph
| with more
\ Nodes /
—— [Query ’
I |\ SPARQL |
Explore \ 2 $.
| Resource | ;
\ Information / \
X | F'roces':mg \
T . Object
Find Linked | | Visualize J

\ Connections /| Object

Fig. 1. Working Schema

Volume 16 Issue 1 2026

www.veredasjournal.org

Il. SYSTEM MODULES

The system consists of several modules. The most important
modules will be explained in this section.

A. Configuration module

The system starts by using this module to configure and
initialize all the required variables needed to fire up the system.
The system is developed in a modular fashion as highlighted by
[6], [7], therefore, the variables in this module can easily be
changed to fulfil any further developments. The configuration
module includes the setup of the triplestores to access and
retrieve the data from. Currently, the system uses only DBpedia
dataset to search and retrieve the RDF data, using the DBpedia
Lookup Service APl . However, the module is designed in a
way that can allow further datasets APIs to be included and fetch
the data from.

After initializing all the required variables, the module
begins to initialize the services to be added to the application.
One of the services is to initialize the SPARQL query service so
as to handle the resources when they are queried from the
SPARQL endpoint.

B. Graph module

This module is responsible mainly for the graph layout of the
system. The module starts by initializing all the required
variables for the layout such as nodes, node types and zoom ratio
of the view, and then initializes the visualization engine by
importing defaults into the jsPlumb instance. It creates a main
graph unit for the whole system so to draw and display all the
nodes of the graph.

Adding resources as nodes to the graph is the next mission
of the module with the help of Graph Node and Linker Modules.
This can be done by taking a resource 1D, which is the resource
URI itself, and finds the label of the resource, and adding to the
graph as a new node. The process of adding a new resource is
shown in Fig. 2. Since this module mainly takes care of the
layout of the graph, adding new resources is performed by taking
care of the available nodes on the graph as well. For instance,
when opening a resource Details Box (or Details Panel) as
shown in Fig. 5, and a resource is added from that Details Box
of the opened resource, the newly added resource will be added
around the corresponding resource. This is implemented by
taking and keeping the position of each of the opened node. This
way a better Human Computer Interaction (HCI) usability is
achieved for the user to draw the nodes around the opened node.

A drawn node can be removed from the graph; this is
performed in several stages. First, the system pushes this node,
using its URI, into a stack called Node List. This list is used by
the Undo function to redraw the removed node by the user.
Second, the node is removed from the search container so that it
is not included in any of the future search within resources
method. Third, the node Detail Box is removed from the
background when it is open. Fourth, all the endpoints/edges
connected from/to this node are removed by jsPlumb instance.
Finally, the graph node is detached from the graph using the
JQuery detach method.

Deleting all nodes function is also possible from the system,
which passes through the same steps of deleting a single node

Page No: 20

Veredas Journal || ISSN:0874-5102

except it clears all of the nodes, and all of them are redrawn at
once when the Undo action is executed.

The Undo function, as it is clear from its name, is used to go
back to the previous state. The function is triggered when a node
is inserted into or removed from the graph. It works like a stack
by going back step by step from the last performed actions to the
first performed action. The method also goes through several
steps, similar to deleting a node method, performing this action.
When a node is inserted into the graph, it pushes to a list called
Undo Action List. This list is used by this method to go to the
previous state of adding that node. Similarly, when a node is
removed, it is removed from this list as well with the same
reason of node insertion. Undoing an inserted node, which
means deleting this node, will do all the steps of deleting a node.
However, Undoing a deleted node, will do a reversed step for
deleting a node. Undoing a deleted node means inserting that
node into the graph again, which means all the relations and
properties of this node have to be available all over again for the
system. This is more likely to be the case than as redrawing the
node from the beginning, except remembering the position of
the removed node to be redrawn at the same position of its
deletion.

Resource Id)

Resource Id =
decodeURIComponent(Resource Id)

Node not
available on the
graph?

True False

/“Highlight ™\
new Node(Resource Id) _the Node /

o o

v

True topPosition && False

F leftPosition 4\

nodes[Resource Id]

Set new Node topPosition
Set new Node leftPosition = new Node

new Node collect
Data(highlight, undo)

v

new Node show visualization
(highlight, aroundNode)

(End e——
Fig. 2. Adding node to the graph

Highlighting the nodes while being clicked is attained from
this module as well. When the Details Box for any of the
resources is opened, that resource is highlighted with a different
color with the purpose of HCI features as emphasized by [8].
Besides, this feature is used by the Explore method so as to get
a configured number of new resources semantically related to
the highlighted resource and add them to the graph.

C. Buttons module

This module is designed to aware of all the buttons, toolbar
and navigation menu of the system. It starts by initializing a
couple of variables needed for the system and then initializes the
search form of the system.

Volume 16 Issue 1 2026

www.veredasjournal.org

The search for resources is the most important section of this
module which starts by selecting the search provider of the
system. Currently, only the DBpedia Lookup service is set for
the system as the search provider, but as mentioned above, the
system is designed to accept further search providers by
modifying the configuration module. An auto complete service
is provided for sending requests to the SPARQL endpoint and
receiving the responses for the searched term using AJAX
technologies. This will help users to get results as soon as they
start writing their queries. Resource labels are shown for the
search results and they are pushed into a result container. When
selecting a resource, the URI of the resource is returned from the
endpoint and is sent to Graph Node module to add the resource
and complete the process. Furthermore, a local database for the
selected resource is prepared so as to assemble the related data
of the selected resource for the search within the resource
process.

Searching inside the resources is the next important unit of
the module. When a resource is selected from the search section,
this unit is activated so as to find the resources that are related to
the selected resource. The method provides an autocomplete
facility while searching for related data of the available
resources and lists the results in a dynamic list. The related data
in the dynamic list is displayed as subject, predicate and object
considering the principles of LD, where the subject is the
resource containing the searched data, the predicate is the
property of that resource, and the object is where the searched
data is found (the target). When the targeted resource is selected
from the list, the details box for the resource containing the
related data gets opened and the target resource is perceptible.
The related data of resources are stored in a local storage, and
whenever a resource is added or removed from the graph, this
storage is refreshed so as to provide related data for all available
resources on the graph.

One of the interesting methods in this module is the Explore
utility. It is developed in order to assist users in exploring more
semantic relationships to a specific resource. This method works
as soon as there are resources activated on the graph. It takes a
number of LD of the selected resource randomly to be drawn on
the graph. The number of selected LD can be modified from the
configuration module. Fig. 3, illustrates the dataflow of the
explore utility.

Simple information of any resource can be displayed quickly
in the Resource Information Box, which displays resource label,
DBpedia URL of the resource, Wikipedia URL of the resource,
and the abstract of the resource. The other facility that is
provided by this module is the Zoom utility, where the drawn
graph nodes can be zoomed in and out.

The search menu is designed with the HCI philosophies in
mind, where the accordion effects are applied to the forms in
order to give users a wider area for exploration to users.

D. Application module

Once the variables needed to drive the system are prepared,
the application module takes the responsibility to initialize the
methods of jsPlumb, graph module, button module, profile
module, and other processes needed for the system. The jsPlumb
methods include getinstance, which instantiates independent

Page No: 21

Veredas Journal || ISSN:0874-5102

instances of jsPlumb by taking an object which provides the
defaults from the configuration module,
registerConnectionTypes to set a collection of attributes such as
paint style and hover paint style. This is a subset of the
parameters one can set in an Endpoint or Connection definition,
and registerEndpointTypes which registers all of the given
Endpoint types on this instance of jsPlumb. Afterwards, the
module initializes the FancyBox tool, which is used to display
images of resources in a "lightbox™ that floats overtop of web
page.

< Explore (URI)

’

No_of LD =
resource_linked_data_length

LD = resource_linked_data

True False

(/ Exploring_Configho = (>

getRandomint{0, No_of_LD)

v

Linked_Resource =
LD[getRandomint]

targetURI =
decodeURIComponent{Linked_Resource URI)
Y

¥
Graph.addMNode(targetURI)

|

Exploring_Configho++
Fig. 3. Explore method

E. Graph node module

The module contains the most important parts of the system,
where the nodes of the graph are spawned. The module begins
by initializing a set of variables needed for the graph node such
asits LD, presenting basic info of the node, images, and etc., the
newly added node is checked with any of the available nodes of
the graph to check whether there are relations between them or
not. If there are linked relations among any of the available
nodes, then the newly added node has to be linked with them.
This process is done with the help of the relationships class of
the system which takes the URI of the target, connection label,
direction of the connection, and the endpoint label.

Collecting the contents of the resource is the next mission of
the module. The LD of the resource is collected so as to be
presented in the details box. The method is divided into three
main parts: Literals, In connections, and Out connections. For
each linked relation of the resource, the URI, the type of
direction and the literal the linked resource converted to string
are obtained and pushed into an array of elements so as to be
used for the details box.

Each drawn node has an image representing the resource.
This image is obtained using either the depiction property of
FOAF or the thumbnail property of DBpedia. Afterwards, the
image is sent to be stored in an images array in order to be used
by Fancybox tool to show the resource image.

Volume 16 Issue 1 2026

www.veredasjournal.org

Since there is no server side scripts in the proposed approach,
and we have no control over the server files we are querying to,
hence using the technology of JSONP is a must. To collect the
data of a resource, the module, with the help of Server-Linker
class, starts the process of making queries and get the LD. It
starts by initializing the API service for the dataset server to be
queried from, which is the DBpedia dataset in our case.
However, the method is flexible to accept other dataset APIs
since it extracts the prefix of the dataset from the resource URI.
Later, the SPARQL query is initialized to set the format and
parameters of the query such as the service endpoint and query
output as JSON. Then the JSONP method is used to set the URL
of the service including resource URI, set the callback parameter
and request data using the script tag to overcome the problems
caused due to cross-domain policy. When the method
successfully requests data, the return of the request is the JSON
formatted data.

So far, the LD to the queried resource is available at the
client side as JSON formatted object, hence, binding the results
of the object is the next step to be performed. The method starts
by taking the JSON object which starts to analyze it. If the JSON
object is returned with no problems and the service of the
endpoint is not empty, the time taken to process the resource is
set to start. There are two main directions for the LD of the
resource, which are In and Out directions. Thus, a list for each
of them is created so as collect the related data for both
directions. For each item in the object result a check for a self-
connection is taken so as to prevent possible loops. The method
then checks whether the item is Out or In. When the connection
is Out, the image of the resource is stored and the item type is
tested for whether it is a URI, Literal, or an unknown type. When
the type is a literal, the item is added to the literals list of the
resource by taking the language version of the literal.

Once the type is a URI, then it is decoded and examined with
the URI of the current resource to flag any self-targeted
connections, which creates a loop. Afterwards, the node type,
endpoint label, and node URI are stored for the node. For
instance, from the Out connections in the detail box of Iraq
resource, Language as type, Kurdish language and its URI as
endpoint label and URI can be found.

When the type is not a URI nor a literal, then the type is
unknown yet. A similar process for the In direction is achieved
for the item.

Up to now, the ontologies and properties of the resource is
collected for both In and Out connections, thus, parsing them is
the next turn so as to add connections for each property type,
property URI and endpoint label of each resource.

Finally, the post parsing begins to set labels for both English
and no language labels. After that, the search database gets
refreshed to include the newly LD of the current resource so that
they are available for the search within the resources method to
find related data for the whole graph. Consequently, the whole
drawn graph gets refreshed and the newly added resource gets
inserted into a list of nodes. Finally, the undo action is logged to
insert the node list into the undo action list.

Page No: 22

Veredas Journal || ISSN:0874-5102

F. Linker module

As it is clear from its name, the module’s main duty is to
form an environment for system files to link and connect with
other tools used for the system, such as jsPlump toolkit and
fancybox tool. Since the module communicates with the
visualization tools, methods needed for visualizing nodes are
employed in this module as well. Linker module consists of a
wide range of methods, however, the most important methods
will be explained in this section. When the data of a resource has
been processed by Graph Node module, it is then required to be
drawn on the ground. To do so, required information need to be
sent to this module so that it is processed and sent to other tools
to draw the resource as a graph node.

When the graph module initializes the graph, it uses this
module to initialize the visualization engine by connecting to
jsPlumb tool and run the jsPlumb Instance to import all the given
defaults into this instance of jsPlumb.

As soon as the system is ready and the graph is initialized,
resources can be added to the graph. If a resource has newly been
added to the graph, a random position from an available empty
ground area is taken to draw the node on. When a node has
recently been deleted from the graph and needs to be added
again, for instance from the Undo action, then the node is re-
drawn at the same place where it was deleted since the top and
left positions of the node are stored in the window variable for
this purpose. If a node is added from the details box, the position
of the newly added node will be close to the opened node with
the aim of drawing nodes next to nodes having relationships
with each other. These facilities are achieved by specific
methods developed specifically for these purposes.

A method to show the node then runs to send the required
data for the jsPlumblnstance object to draw the node. The
draggable method of the object is used for the node so that each
drawn node can easily be moved on the ground. To turn the
entire elements into connection sources and targets, makeSource
and makeTarget methods of the jsPlumb tool have been used.
With these methods elements are marked as a source or target,
and they provide an endpoint specification for the tool to use
when a connection is established.

Images of the nodes are also set in this method be checking
the resource data whether it has an image or not. In case the
resource already have the image, which takes from the resource
depiction or thumbnail properties, then the details of this image
will be sent to Fancybox tool in order to set the image and make
it visible within the node. In case the resource property does not
provide any image details, then default images (sprites) for the
node are employed to show icons for the node representing its
type, for example for person nodes a person icon will be visible.

When more than a node is added to the graph, the probability
of having relations with the available nodes has to be performed
to connect the linked nodes. This module is responsible for this
task as well, by taking the URI of the newly added resource and
comparing it with each of the URIs of the available nodes on the
graph. The getConnections method of the jsPlumb Instance is
used to get all of the connections currently managed by the
jsPlumb instance by taking the URI of the newly added resource,
URI of the target resource, which is from the available nodes on

Volume 16 Issue 1 2026

www.veredasjournal.org

the graph, and the connection label, which is the type of the
connection between both nodes. Afterwards, jsPlumb Connect
method establishes the link connection between the two nodes if
and only if a connection with the same label and direction is not
found.

During this process, the time taken from the first step of the
creation of the node till the final step of the visualization is
calculated and presented. Also, the time taken to arrange the
details box such as ordering them into tabs of description, In
connections, and Out connections is calculated and presented to
the console window.

I1l. IMPLEMENTATION AND RESULTS

In this section, a brief introduction of the interface and the
interaction model of the web application on the proposed
framework: LOD Explorer, is the presented. Later on, real tests
and performance measurements of the system is proposed,
furthermore, the scalability of the system is verified. The
exploratory search systems are sometimes referred to as Human-
Computer Information Retrieval systems (HCIR) by the
scientific community [9]. Hence, the position of the interactions
for successful explorations is emphasized from this
denomination. The interfaces have to be optimized to favor the
users’ engagement and to support them continuously and
intensively from a cognitive point of view.

The user interface of the application consists of the following
parts as shown in Fig. 5:

1) Search panel (center)

2) Toolbox (top right)

3) Statistics Box (top right)
4) Description box (right)
5) Details Panel (left), and
6) the ground

Statistics box, as shown in Fig. 4. The statistics that are
presented in this box are as follows:

1. The total number of triples (piece of information) that
have been processed by the system so far;

2. Information about the last inserted resource into the
graph, which are detailed below:

. The number of triples the resource owns

. The time needed to visualize the node

. The required time needed to processes the resource
. The time spent to download the resource triples

. The total time taken to insert the node into the
graph including the downloading, processing, and
visualizations.

A complete description of the application interface is
described in [3].

Page No: 23

Veredas Journal || ISSN:0874-5102

Processed total of 2012 triples

Last inserted resource has 83 triples

Visualizing Time: 17.1 ms Processing Time: 3.1 ms
Dovwnloading

: 5845 m= Total Time: 616.7 ms
Time:

Fig. 4. Statistics Box

A. Real tests and Validation

Testing is the process of assessing a system or its module(s)
with the aim of finding whether it fulfils the identified
requirements or not. In other words, testing is executing a system
S0 as to find any gaps, errors, or missing requirements in contrast
with the actual requirements [10]. In this section, real tests for
the proposed system are performed by taking several
experiments. Since the system is fully implemented depending
on the client side technologies, the system performance depends
on the machine a user is using for the explorations. Hence, the
test cases have been performed on different computing
platforms. The platforms taken for the tests are shown in Table
I:

1) Testcasel
In this case, the focus will be on athletics and sport clubs.
Real Madrid C.F, Cristiano Ronaldo, Lionel Messi, La Liga
2010-2011, and La Liga 2011-2012 Football Leage Seasons are
taken as resources. The graph for the above resources can be
seen from Fig. 6. The number of properties and In and Out
connections for each resource is shown in Table II:

TABLE |. RESOURCES WITH THEIR NO. OF PROPERTIES AND CONNECTIONS

g - . o
2 z 2 s | 3| o 2
E 8 8 < | @ e} 3
i) = o 84 3 =
g a I @
o
. Intel Core i7-

Dell Preglsmn 37200M CPU @ Windows Google

p1 Mobile 2 60GHz. 4 24GB | 256 10 Pro. 64- Chrome

Workstation Corés 8Lo’ical DDR3 | SSD bif V63, 64-
M6700 0109 bit

Processors

Google

02| MacBook pro | 22 GHz, Intel | 16GB | 256 Hth?cs?eSrra Chrome

Corei7,4cores |DDR3 | SSD |19 V63, 64-
V. 10.13.2 bit

Dell Precision 3I7r]2tgzgl?/lo(';ePL|J7@ Linux, Google

P3 Mobile 2 60GHz. 4 24GB | 256 Ubuntu Chrome

Workstation) . DDR3 |HDD | 14.04 LTS, | V64, 64-
Me7o0 | COres: 8 Logical 64-bit bit

Processors

- Google

P4 Lenovo Mixx 2 42Igt2elcglcjre@|i 6 8GB | 256 | Windows | Chrome

11 Tablet GHz, 2 Cores DDR3 | SSD | 8.1 64-bit VGI;,it64—

Volume 16 Issue 1 2026

www.veredasjournal.org

‘Summery of Uiy of Zakho

Fig. 5. User interface

Fig. 6. Test case 1 resources

TABLE Il. RESOURCES WITH THEIR NO. OF PROPERTIES AND CONNECTIONS

Resource Name Pr,:[;)éftfies No. of Connections (In/Out)
Real Madrid C.F 88 5693
Cristiano Ronaldo 61 1628
Lionel Messi 67 1475
La Liga 2010-2011 197 701

From the above graph, some interesting facts are observed.
All of the resources have connections with each other with
different connection types. For instance, Cristiano Ronaldo has
a couple of connections with Real Madric C.F as one of the
connections clarifies that the resource is the team he is playing
for; he has two connections with Lionel Messi and La Liga
season 2011-2012 from wikiPageWikiLink property; he has
connections to La Liga 2010-2011 as seasons league top scorer.
Real Madrid C.F is the winner of Spanish league season 2011-
2012 but Lionel Messi is the league top scorer for the same
league.

The time needed for the resources in the graph to be drawn
on the ground are exposed in Table 11l and Table IV.

2) Testcase?2
In this experiment, a graph with a larger number of nodes
was the target. Fifty resources with a high number of

Page No: 24

Veredas Journal || ISSN:0874-5102 www.veredasjournal.org

connections from different types have been added to the graph. 9| _ 1351.047 | 1313.228 | 29.354 | 8.465 |P1
- - age &)
The aim was to yalldate tlje sqalablllty of system. The graph of By g 662896 | 639698 | 16976 | 6222 |p2
this experiment is shown in Fig. 7. — = | 67 |1475
) i 1| g 873.006 | 802.203 | 54.347 | 16.456 |P3
B. Result discussions 2| =2 2296.171 | 2128082 | 133.825 | 34.264 |P4

The results of the above experiments are discussed in this 13 626532 | 603054 | 15439 | 8039 |P1

section. Starting from test case 1, the nodes of the graph are ~ — =
tested and measured on different platforms, as shown in Table [4| 28| o, | 5o (1774441 | 1758381 | 7.523 | 8587 |P2
I11 and Table IV, using both localhost copy and the uploaded one 5|93 855.996 | 800.100 | 34.365 | 21531 |P3
to the online host. 16 1687.813 | 1580636 | 64.949 | 42.228 | P4
Results of test case 1, where the graph nodes have more 17 709.336 | 686.588 | 15638 | 7.110 |P1

- - . — o~
connections with each other, are presented in Table Il and Table 18| S5 513181 | 499541 | 6487 | 7153 | P2

V. — 35| 191 | 707

19| 53 1092.932 | 1037.034 | 32.727 | 23.171 |P3

| N

The results clarify that the visualization process does not 20 3064312 | 3161872 | 59.353 | 43.087 |pa
depend on the amount of information and the number of
connections a node has with other nodes of the graph, but
instead, the processing time effects with this situation.

TABLE IV. TEST CASE 1 RESULTS FROM ONLINE HOST

Accordingly, the hardware and software specifications of the o | @ 38 e 2 o
machine building the graph has a direct influence on the time of s E £« g £8 g3 £8 | £8 8
. . . c ol
the graph creation. P4 has worst performance in all experiments 2| g |¢8|%%g £ g B 2 28 28 | e
for both online and local host cases due to the worse 8l 3| 9| £2 SE 22 | S£ |8
specifications the machine has among other machines. 3 |~ 8| BE 8 CE | 2E |2
z = o S
'_

w 1767.134 | 1647.437 | 108.023 | 11.674 |P1
=9 4624369 | 4542.649 | 70790 | 10.930 |P2

S 2| 8| 5693
x5 2081.305 | 1757.858 | 294.090 | 29.357 |P3
= 2644.071 | 2202.772 | 384.248 | 57.051 | P4
831.020 | 786494 | 37.234 | 7.292 |P1
€38 1428.337 | 1394938 | 26676 | 6.723 |P2

£ 8| 3 | 1628
28 1022.099 | 915066 | 87.757 | 19.276 |P3
1347.060 | 1190.267 | 131.338 | 25.456 | P4
804.165 | 768413 | 29556 | 6.196 |P1
T G 1200215 | 1170772 | 23312 | 6131 |P2

S&| 5| 1475
= 917.607 | 836.276 | 65.677 | 15.654 |P3
1383593 | 1258.390 | 101.792 | 23.411 | P4
B 532,906 | 508.222 | 16246 | 8438 |P1
§>§ 107| 701 | 1205779 | 1186.719 | 11003 | 7967 |P2
- 7. A graph with 50 nodes S8 1480.762 | 1435747 | 27.430 | 17.585 |P3

N
TABLE I1l. TEST CASE 1 RESULTS FROM LOCALHOST 16 1060.046 976.106 49.884 | 34.055 | P4
170 o 1116.425 | 1092491 | 15909 | 8.025 |P1
@ o] © <

2| 8 Y. g ° g |, 18| 28 | o) | 7oy | 1127999 | 1110316 | 9161 | 8522 |P2
| 5] E |22 EB F3 £32 £Fg |3 19| =2 1029.644 | 982155 | 25857 | 21.632 |P3

S < 8 |RS8 [25 o 8 o5 |© — =g

| 8 S g 8l =8 z 3 £8 £8 |E 20 1435.325 | 1358.168 | 50.741 | 26.416 | P4

8 5 o © .2 © .2 2.2 N2 |5

cl 2|5 |s§5| 2F | 2§ | 5% | 3% |%

k2 o o 6 & s E o E 2 E o .
|z 8 o > For test case 2, where the aim was to test the system for the

1 3753979 | 3626000 | 116376 | 11543 |p1 scalability, fifty nodes were inserted into the graph, as displayed
il = : ; : i in Fig. 7. These nodes were chosen to have as many connections
| 2| § w | oo | sy | 180713 | 1501610 | 69829 | 9274 |P2) as possible. As a result, 427,391 pieces of information were

3|2° 2882149 | 2567.175 | 282.941 | 32.033 |P3 downloaded to the graph and were processed by the system to
— @ H H H H H

al: 3229790 | 2914799 | 445551 | 69.420 | Pa visualize the node§ and form the graph. The experiment in this
case was tested using only P1.

5 1437.209 | 1399.479 | 30403 | 7.327 |P1)

L 696206 | 671925 | 18553 | 5728 |p2 The outcomes in Table V show t_hat, for all the 50 nodes, the
— = S| 61 |1628 overall time spent to form the graph is around 126 seconds (2.52
7158 959916 | 859273 | 80.763 | 19.880 |P3| seconds per node as average). However, most of the time was

8 2013218 | 1811.451 | 171.731 | 30.036 |P4 spent for downloading data from the dataset, which was about

Volume 16 Issue 1 2026 Page No: 25

Veredas Journal || ISSN:0874-5102

115 seconds (2.3 seconds per node as average). The total time
needed to process the graph which consisted of 427,391 piece of
data was only 8.316 seconds (0.16632 seconds per node), and
the time required to visualize all the graph nodes was only 3.177
seconds (0.06354 seconds per node) which are amazing results.

C. Validation

A manual testing is performed for the above experiments in
order to investigate the effective performance of the system. The
investigation is conducted so as to meet the goals of Software
Development Life Cycle (SDLC). The system operated
smoothly and met the requirements that conducted its design and
development. The system appropriately responded to all kinds
of queries, and its functions achieved in an outstanding time and
free of bugs.

TABLE V. FIFTY NODE GRAPH STATISTICS

Node No
Overall Time
Downloading

Time
Processing Time
Visualizing Time

Node No.
Overall Time
Downloading

Time
Processing Time
Visualizing Time

1| 3715.52 | 3212.69 |467.33|35.51| 26| 2433.98| 2330.67| 74.82 | 28.50

2| 3970.68 | 3539.39 |412.38|18.92 27|6300.63| 5827.37| 437.79| 35.48

3| 4729.00 | 4367.85 |340.38|20.77| 28| 1201.66| 1037.25| 119.85| 44.55

4 | 3158.73 | 2779.75 |361.94|17.04| 29| 2803.04| 2561.34| 197.06| 44.64

5| 6958.82 | 6548.30 |393.07|17.46(30|1110.53|1009.79| 4.32 | 96.42

6 |14077.16 | 13617.83 | 443.12|16.21| 31| 727.58 | 566.97 | 19.88 | 140.73

7 | 5508.63 | 5082.13 [405.34|21.17|32| 706.48 | 660.95 | 7.82 | 37.71

8 | 1893.47 | 1543.60 |325.36|24.52(33| 587.19 | 508.77 | 37.02 | 41.40

9| 1608.53 | 1462.60 |129.93|16.00| 34| 561.24 | 468.27 | 40.38 | 52.58

10| 7610.72 | 7220.10 |371.50{19.11| 35| 1391.80| 917.79 |387.93| 86.08

11| 2316.30 | 2037.29 |257.31|21.70{ 36| 567.95 | 390.62 | 13.45 | 163.89

12| 2302.13 | 2078.09 |206.78|17.26| 37| 928.57 | 798.08 | 100.01| 30.48

13| 734.93 | 651.36 | 62.23 |21.34|38| 814.92 | 652.23 | 5.82 |156.87

14| 1121.49 | 953.34 |151.87|16.28|39| 565.19 | 395.85 | 23.23 | 146.11

15| 5190.13 | 4817.52 |354.05/18.56| 40| 1361.69| 1279.46| 41.03 | 41.20

16| 3110.86 | 2657.91 |431.83(21.12| 41| 789.30 | 713.84 | 16.79 | 58.67

17| 4812.16 | 4405.92 |387.30|18.93| 42| 980.12 | 762.43 | 16.75 | 200.94

18| 80242 | 718.47 | 62.06 |21.89|43| 835.27 | 718.69 | 39.94 | 76.65

19| 1709.67 | 1527.80 |164.30|17.57|44|1319.71| 1212.03| 42.23 | 65.45

20| 2285.41 | 2034.74 |227.89|22.77| 45| 1081.70| 887.32 | 22.44 | 171.94

21| 1365.36 | 1238.99 |103.40|22.98| 46| 990.27 | 704.04 | 54.16 | 232.08

22| 473.75 | 430.46 | 11.85 [31.45|47| 790.90 | 720.29 | 12.61 | 58.00

23| 293.25 | 268.17 | 3.20 |21.88|48| 680.26 | 448.63 | 11.42 | 220.22

24| 5493.88 | 5136.42 |340.22|17.23| 49| 3791.37| 3549.73| 18.85 | 222.79

25| 5949.93 | 5785.98 |124.04|39.92(50| 1547.90| 1329.52| 31.98 | 186.41

Volume 16 Issue 1 2026

www.veredasjournal.org

TABLE VI. TABLE 5IN TOTAL

No. of ; Downloading Processing Visualizing
Nodes Overall Time Time Time Time
50 126,062.141 114,568.588 8,316.220 3,177.332

IV. CONCLUSION AND FUTURE WORK

The effortless process of uploading data online creates a
giant volume of data. This causes the information retrieval
systems to face new challenges in order to return relevant data.
The evolution of the syntactic Web to the Semantic Web
technology where the information can be understood by
machines has raised high expectations. This technology
increases the efficiency of searching approaches through
presenting the automated data processing.

The amount of published data consistent with the standards
of LD is growing dramatically. However, consumption is still
limited for professionals who understand the technologies of
LD. Thus, a tool for intuitive presentation of LD is crucial. LOD
Explorer, an interactive and easy-to-use tool for exploring RDF
resources, is presented. The application is made using pure
JavaScript and jQuery libraries without the need to a server side
software. Application performance and scalability has been
measured using several different platforms, and the results have
been excellent.

The future plan for the system is to enrich it with several
further functions such as adding more RDF datasets, giving
users the opportunity to select a desired shape for the nodes, and
adding path finding feature so as to find the exact relation
between two or more resources. Furthermore, adding advanced
features to include semantic similarity for words and suggest
semantically similar words to a query as in [11].

An interesting future work would be by building a custom
ontology for a specific task such as e-learning and other
ontologies as in [12], [13] and apply the LOD Explorer to
retrieve triples and present the retrievals.

REFERENCES

[1] K. Jacksi and S. M. Abass, “Development History of the World Wide
Web,” Int. J. Sci. Technol. Res., vol. 8, pp. 75-79, 2019.

[2] K.Jacksi, N. Dimililer, and S. R. M. Zeebaree, “A Survey of Exploratory
Search Systems Based on LOD Resources,” in PROCEEDINGS OF THE
5TH INTERNATIONAL CONFERENCE ON COMPUTING &
INFORMATICS, COLL ARTS & SCI, INFOR TECHNOL BLDG,
SINTOK, KEDAH 06010, MALAYSIA, 2015, pp. 501-509.

[3] K. Jacksi, S. R. M. Zeebaree, and N. Dimililer, “LOD Explorer:
Presenting the Web of Data,” Int. J. Adv. Comput. Sci. Appl. IJACSA, vol.
9, no. 1, 2018, doi: 10.14569/1JACSA.2018.090107.

[4] K. Jacksi, N. Dimililer, and S. R. Zeebaree, “State of the Art Exploration
Systems for Linked Data: A Review,” Int. J. Adv. Comput. Sci. Appl.
IJACSA, wvol. 7, no. 11, pp. 155-164, 2016, doi:
dx.doi.org/10.14569/IJACSA.2016.071120.

[5] K. Jacksi, “Design and Implementation of E-Campus Ontology with a
Hybrid Software Engineering Methodology.”

[6] K. Jacksi, F. Ibrahim, and S. Ali, “Student Attendance Management
System,” Sch. J. Eng. Technol. SJET, vol. 6, no. 2, pp. 49-53, 2018.

Page No: 26

Veredas Journal || ISSN:0874-5102

(7]

8]

(9
[10]

K. Jacksi, “Design And Implementation Of Online Submission And Peer
Review System: A Case Study Of E-Journal Of University Of Zakho,”
Int. J. Sci. Technol. Res., vol. 4, no. 8, pp. 83-85, 2015.

S. R. M. Z. Adel AL-Zebari Karwan Jacksi and Ali Selamat, “ELMS—
DPU Ontology Visualization with Protégé VOWL and Web VOWL,” J.
Adv. Res. Dyn. Control Syst., vol. 11, no. 1, pp. 478-485, 2019.

N. Marie, “Linked data based exploratory search,” phdthesis, Université
Nice Sophia Antipolis, 2014.

M. Fagan, “Design and code inspections to reduce errors in program
development,” in Software pioneers, Springer, 2002, pp. 575-607.

Volume 16 Issue 1 2026

[11]

[12]

[13]

www.veredasjournal.org

R. Ibrahim, S. Zeebaree, and K. Jacksi, “Survey on Semantic Similarity
Based on Document Clustering,” Adv. Sci. Technol. Eng. Syst. J., vol. 4,
no. 5, pp. 115-122, 2019, doi: 10.25046/aj040515.

S. R. Zeebaree, A.-Z. Adel, K. Jacksi, and A. Selamat, “Designing an
ontology of E-learning system for duhok polytechnic university using
protégé OWL tool,” J. Adv. Res. Dyn. Control Syst., vol. 11, no. 05-
Special Issue, pp. 24-37, 2019.

A.-Z. Adel, S. Zebari, and K. Jacksi, “Football Ontology Construction
using Oriented Programming,” J. Appl. Sci. Technol. Trends, vol. 1, no.
1, pp. 24-30, 2020.

Page No: 27

